Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pathogens ; 13(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38668292

RESUMO

Wild birds are common hosts to numerous intracellular parasites such as single-celled eukaryotes of the family Eimeriidae (order Eucoccidiorida, phylum Apicomplexa). We investigated the infection rates, phylogeny, and pathogenicity of Isospora and Lankesterella parasites in wild and captive passerine birds. Blood and tissue samples of 815 wild and 15 deceased captive birds from Europe were tested using polymerase chain reaction and partial sequencing of the mitochondrial cytochrome b and cytochrome c oxidase I and the nuclear 18S rRNA gene. The infection rate for Lankesterella in wild birds was 10.7% compared to 5.8% for Isospora. Chromogenic in situ hybridization with probes targeting the parasites' 18S rRNA was employed to identify the parasites' presence in multiple organs, and hematoxylin-eosin staining was performed to visualize the parasite stages and assess associated lesions. Isospora parasites were mainly identified in the intestine, spleen, and liver. Extraintestinal tissue stages of Isospora were accompanied by predominantly lymphohistiocytic inflammation of varying severity. Lankesterella was most frequently detected in the spleen, lung, and brain; however, infected birds presented only a low parasite burden without associated pathological changes. These findings contribute to our understanding of Isospora and Lankesterella parasites in wild birds.

2.
Microorganisms ; 10(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630463

RESUMO

BACKGROUND: While the dynamics of disease emergence is driven by host-parasite interactions, the structure and dynamics of these interactions are still poorly understood. Here we study the phylogenetic and morphological clustering of haemosporidian parasite lineages in a local avian host community. Subsequently, we examine geographical patterns of parasite assemblages in selected avian hosts breeding in Europe. METHODS: We conduct phylogenetic and haplotype network analyses of Haemoproteus (Parahaemoproteus) lineages based on a short and an extended cytochrome b barcode region. Ordination analyses are used to examine changes in parasite assemblages with respect to climate type and geography. RESULTS: We reveal relatively low phylogenetic clustering of haemoproteid lineages in a local avian host community and identify a potentially new Haemoproteus morphospecies. Further, we find that climate is effectively capturing geographical changes in parasite assemblages in selected widespread avian hosts. Moreover, parasite assemblages are found to vary distinctly across the host's breeding range, even within a single avian host. CONCLUSIONS: This study suggests that a few keystone hosts can be important for the local phylogenetic and morphological clustering of haemoproteid parasites. Host spatio-temporal dynamics, both for partially and long-distance migratory birds, appear to explain geographical variation in haemoproteid parasite assemblages. This study also gives support to the idea that climate variation in terms of rainfall seasonality can be linked to the propensity for host switching in haemosporidians.

3.
Microorganisms ; 11(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36677352

RESUMO

BACKGROUND: Birds are known to maintain and spread human pathogenic borreliae, but they are common hosts of diverse parasite communities, notably haemosporidians. Only a few studies examined whether tick infestation and/or Borrelia prevalences vary with hosts' haemosporidian infection status. METHODS: Here, we study whether Ixodes ricinus infestation rates and Borrelia infection rates in bird-feeding ticks vary according to haemosporidian infection status in a community of free-living avian tick hosts. RESULTS: Birds of six avian species harbored the majority of ticks. Both the tick infestation prevalence and the intensity peaked during spring and summer, but while bird-feeding nymphs prevailed in spring, bird-feeding larvae dominated in summer. Almost half of the bird-feeding ticks were found to be positive for B. burgdorferi s.l. Although the majority of infections involved bird-associated B. garinii and B. valaisiana, B. garinii appears to be the dominant Borrelia strain circulating in locally breeding avian species. We detected a negative link between the hosts' haemosporidian infection status and the Borrelia infection rate of bird-feeding ticks, but the association was dependent on the host's age. CONCLUSIONS: Our results on tick infestation intensity support the idea that more immunologically vulnerable hosts harbor more ticks but suggest that different mechanisms may be responsible for tick infestation rates among immunologically naïve and experienced avian hosts. The results on Borrelia infection rates in bird-feeding ticks are consistent with studies revealing that intracellular parasites, such as haemosporidians, can benefit from the host immune system prioritizing immune responses against extracellular parasites at the expense of immune responses against intracellular parasites. The findings of our study urge for a more robust design of parasitological studies to understand the ecology of interactions among hosts and their parasites.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32455590

RESUMO

Lyme disease (LD) is the most common tick-borne human disease in Europe, and Borrelia garinii, which is associated with avian reservoirs, is one of the most genetically diverse and widespread human pathogenic genospecies from the B. burgdorferi sensu lato (s.l.) complex. The clinical manifestations of LD are known to vary between regions and depend on the genetic strain even within Borrelia genospecies. It is thus of importance to explore the genetic diversity of such pathogenic borreliae for the wide range of host and ecological contexts. In this study, multilocus sequence typing (MLST) was employed to investigate the local population structure of B. garinii in Ixodes ricinus ticks. The study took place in a natural wetland in Slovakia, temporally encompassing spring and autumn bird migration periods as well as the breeding period of resident birds. In total, we examined 369 and 255 ticks collected from 78 birds and local vegetation, respectively. B. burgdorferi s.l. was detected in 43.4% (160/369) of ticks recovered from birds and in 26.3% (67/255) of questing ticks, respectively. Considering the ticks from bird hosts, the highest prevalence was found for single infections with B. garinii (22.5%). Infection intensity of B. garinii in bird-feeding ticks was significantly higher than that in questing ticks. We identified ten B. garinii sequence types (STs) occurring exclusively in bird-feeding ticks, two STs occurring exclusively in questing ticks, and one ST (ST 244) occurring in both ticks from birds and questing ticks. Four B. garinii STs were detected for the first time herein. With the exception of ST 93, we detected different STs in spring and summer for bird-feeding ticks. Our results are consistent with previous studies of the low geographic structuring of B. garinii genotypes. However, our study reveals some consistency in local ST occurrence and a geographic signal for one of the clonal complexes.


Assuntos
Grupo Borrelia Burgdorferi , Ixodes , Doença de Lyme , Animais , Grupo Borrelia Burgdorferi/genética , Europa (Continente) , Genótipo , Humanos , Ixodes/genética , Tipagem de Sequências Multilocus , Estações do Ano , Eslováquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...